1. Cosmic Frontier/Structure Formation

List of Projects/PI(s)/Institution(s)

- ENZO simulations of Baryon Acoustic Oscillation (BAO) in the Lyman Alpha Forest and Galaxy Redshift Surveys (M. Norman, USCD)
- No HEP funding (cut from SciDAC2 CAC proposal)

Lyman alpha forest

Galaxy large scale structure

4096³, 16,384 cores Kraken

Sloan Digital Sky Survey

Baryon Acoustic Oscillations (BAO) in the Cosmic Microwave Background

BAO and cosmic structure

Baryon Acoustic Oscillations (BAO)

- Imprint on the matter power spectrum P(k) due to acoustic oscillations of the baryon-photon fluid prior to recombination
- Serves as a standard ruler, calibrated by CMB
- Measure d_A(z) and H(z) from large galaxy redshift surveys
- Systematics requiring extreme scale simulation
 - Effect of nonlinearity
 - Redshift space distortions
 - Complex galaxy bias

Detection of BAO in SDSS luminous red galaxy LSS Eisenstein et al. (2005)

First Self-consistent Simulation of Baryon Acoustic Oscillations in the Intergalactic Medium Michael Norman, Robert Harkness, Pascal Paschos, UCSD

2048³ cell/particle hybrid simulation, 330 Mpc volume, ENZO code 2048 procs, 1.2 million CPU-hrs, 6 TB RAM, 200 TB output, 6 month job, NERSC Seaborg 2006 INCITE award; 2006 Joule Metric application

AMR = collection of grids (patches); each grid is a C++ object

Projection of refinement levels

160,000 grid patches at 4 refinement levels

N MPI tasks per SMP M OpenMP threads per task Task = a Level 0 grid patch and all associated subgrids processed concurrently within levels and sequentially across levels Each grid is an OpenMP thread

2. Current HPC Requirements

- Architectures
 Cray XT, IBM PowerX
- Compute/memory load
 1024³ AMR→2 MSU, 4 TB RAM
 4096³ non-AMR→4 MSU, 15 TB RAM
- Data read/written
 1024³ AMR→4 TB restarts, 100 TB saved
 4096³ non-AMR→8 TB restarts, 200 TB saved
- Necessary software, services or infrastructure SPRNG, 3D FFT, HYPRE solver
- Current primary codes and their methods or algorithms
 ENZO: block AMR, PM N-body, PPM gas dynamics, FFT+MG Poisson solver; hybrid MPI/OpenMP
- Known limitations/obstacles/bottlenecks
 Scalability of ENZO AMR infrastructure and N-body solver
 Massive I/O can be mitigated by inlining, but not eliminated

3. HPC Usage and Methods for the Next 3-5 Years

- Upcoming changes to codes/methods/approaches
 OO redesign/reimplementation ENZO AMR infrastructure for petascale
 UPC reimplementation of ENZO N-body solver
- Changes to Compute/memory load
 ENZO runs increasing in core counts to 100,000; 100 TB MEM; 100 M SU
- Changes to Data read/written
 4096³ AMR→20 TB restarts, 200 TB saved
 8192³ N-body→35 TB, 350 TB saved
- Changes to necessary software, services or infrastructure exploit UPC/UPC++ to re-engineer ENZO more inlining of analysis functions automatic data migration to SDSC over ESnet

Project StarGate

ANL * Calit2 * LBNL * NICS * ORNL * SDSC

Project StarGate Goals

- Explore Use of OptIPortals as Petascale Supercomputer "Scalable Workstations"
- Exploit Dynamic 10 Gbs
 Circuits on ESnet
- Connect Hardware Resources at ORNL, ANL, SDSC
- Show that Data Need Not be Trapped by the Network "Event Horizon"

OptlPortal@SDSC

Rick Wagner

Mike Norman

StarGate Network & Hardware

ALCF

ESnet

Science Data Network (SDN)

> 10 Gb/s fiber optic network Dynamic VLANs configured using OSCARS

DOE Eureka

100 Dual Quad Core Xeon Servers 200 NVIDIA Quadro FX GPUs in 50 Quadro Plex S4 1U enclosures 3.2 TB RAM

SDSC

Calit2/SDSC OptlPortal1

20 30" (2560 x 1600 pixel) LCD panels 10 NVIDIA Quadro FX 4600 graphics cards > 80 gigapixels 10 Gb/s network throughout

Challenge: Kraken is not on ESnet

NICS

NSF TeraGrid Kraken

Cray XT5 8,256 Compute Nodes 99,072 Compute Cores 129 TB RAM

ANL * Calit2 * LBNL * NICS * ORNL * SDSC

ESnet

StarGate Streaming Rendering

ALCF Internal

3

A media bridge at the border provides secure access to the parallel rendering streams.

gs1.intrepid.alcf.anl.gov

SDSC

5

Updated instructions are sent back to the renderer to change views, or load a different dataset.

ALCF

2

4

fIPy, a parallel (MPI) tiled image/movie viewer composites the individual movies, and synchronizes the movie playback across the OptIPortal rendering nodes.

1

The full image is broken into subsets (tiles). The tiles are continuously encoded as a separate movies.

Simulation volume is rendered using vl3, a parallel (MPI) volume renderer utilizing Eureka's GPUs. The rendering changes views steadily to highlight 3D structure.

ANL * Calit2 * LBNL * NICS * ORNL * SDSC

3. HPC Usage and Methods for the Next 3-5 Years

- Anticipated limitations/obstacles/bottlenecks on 10K-1000K PE system.
 petascale AMR must distribute grid hierarchy metadata and improve mem/cpu workload → dynamic process migration
- Strategy for dealing with multi-core/many-core architectures
 In principle, AMR has more than enough work to keep 1000 core nodes
 busy, but will need very sophisticated runtime support for placing/moving data → UPC?

4. Summary

- Recommendations on NERSC architecture, system configuration and associated service requirements needed for your science:
 - fundamental problem of all gravity calculations is workload and memory imbalance as structure formation proceeds
 - Architecture must have sufficiently high "memory ceiling" per node, and sufficiently high intra/internode BWs to accommodate dynamic but imperfect load balancing
 - Provide highly optimized PGAS to express global AMR grid metadata and N-body particle lists
- What significant scientific progress could you achieve over the next 5 years with access to ~50X NERSC resources?
 - Calibrated, validated dark energy surveys
- What "expanded HPC resources" are important for your project?
 Parallel programming models expressing multilevel parallelism, abstract data structures, and process migration → UPC++?
- Any other special needs or NERSC wish lists?
 Hardware support for small messages